An approach to estimation in relative survival regression.

نویسندگان

  • Maja Pohar Perme
  • Robin Henderson
  • Janez Stare
چکیده

The goal of relative survival methodology is to compare the survival experience of a cohort with that of the background population. Most often an additive excess hazard model is employed, which assumes that each person's hazard is a sum of 2 components--the population hazard obtained from life tables and an excess hazard attributable to the specific condition. Usually covariate effects on the excess hazard are assumed to have a proportional hazards structure with parametrically modelled baseline. In this paper, we introduce a new fitting procedure using the expectation-maximization algorithm, treating the cause of death as missing data. The method requires no assumptions about the baseline excess hazard thus reducing the risk of bias through misspecification. It accommodates the possibility of knowledge of cause of death for some patients, and as a side effect, the method yields an estimate of the ratio between the excess and the population hazard for each subject. More importantly, it estimates the baseline excess hazard flexibly with no additional degrees of freedom spent. Finally, it is a generalization of the Cox model, meaning that all the wealth of options in existing software for the Cox model can be used in relative survival. The method is applied to a data set on survival after myocardial infarction, where it shows how a particular form of the hazard function could be missed using the existing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Cross-Sectional Relative Price Variability and Inflation in Turkey: Time Varying Estimation

Abstract This study investigates the empirical validity of the variability hypothesis in Turkey for the period of February 2005-November 2015, by using cross-sectional relative price data and by focusing on the assumptions of linearity and stability. The linearity assumption between the two variables is ensured by estimating quadratic regression equation. The assumption of stability is secur...

متن کامل

Estimating the Net Survival of Patients with Gastric Cancer in Iran in a Relative Survival Framework

Background: Iran is an Eastern Mediterranean region country with the highest rate of gastric cancer. The present study aimed to evaluate the 5-year net survival of patients with gastric cancer in Iran using a relative survival framework.Methods: In a cross-sectional study, using life-table estimation of relative survival, we reported 1- to 5-year relative survival regarding age, sex, disease st...

متن کامل

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION

Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biostatistics

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2009